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Sen, Kamal, Fredéric E. Theunissen, and Allison J. DoupeFeature neural responses to complex natural sounds such as vocaliza-
analysis of natural sounds in the songbird auditory forebtaiNeu- tions (Eggermont et al. 1983b; Theunissen et al. 2000). This is
rophysiol86: 1445-1458, 2001. Although understanding the pro.ce?érticularly problematic for characterizing high-level auditory
ing of natural sounds is an important goal in auditory neuroscien Qeeurons that may be optimized to analyze natural sounds. An

relatively little is known about the neural coding of these sound i d di hi h ; di
Recently we demonstrated that the spectral temporal receptive figliernative and more direct approach is to characterize auditory

(STRF), a description of the stimulus-response function of auditoREUrons using these sounds. _
neurons, could be derived from responses to arbitrary ensembles oMany natural sounds are structurally complex and contain
complex sounds including vocalizations. In this study, we use thi®th spectral and temporal correlations (Attias and Schreiner
method to investigate the auditory processing of natural sounds in #@97; Nelken et al. 1999; Theunissen et al. 2000). Until re-
birdsong system. We obtain neural responses from several regiongehtly, this posed a methodological problem for the systematic
the songbird auditory forebrain to a large ensemble of bird songs agiaracterization of the stimulus-response function of auditory
use these data to calculate the STRFs, which are the best linear m%rons with natural sounds. This is because the reverse cor-
of the spectral-temporal features of sound to which auditory neuro.raation method that was used to estimate the spectral-temporal
respond. We find that these neurons respond to a wide variety I%ceptive field (STRF) assumed a stimulus ensemble free of

features in songs ranging from simple tonal components to md | and | lati A d Joh
complex spectral-temporal structures such as frequency sweeps spgetral and temporal correlations (Aertsen and Johannesma

multi-peaked frequency stacks. We quantify spectral and tempofedSl; Eggermont et al. 1983a). We recently extended the
characteristics of these features by extracting several parameters fl@@hRF method to overcome this limitation by taking into ac-
the STRFs. Moreover, we assess the linearity versus nonlinearitycsfunt the spectral and temporal correlations present in the
encoding by quantifying the quality of the predictions of the neuraitimulus ensemble (Theunissen et al. 2000). Our method cor-
responses to songs obtained using the STRFs. Our results reyegts for the spectral and temporal correlations present in
success!vely comple>_( functional stages of song analy_sis by neurpng@mnds by performing a weighted average of the stimulus
the auditory forebrain. When we map the properties of auditolyoyng each spike using a mathematical operation that involves
o o e ot o o famon. v e-correlaton in frequency and de-convoluion in tme. I
find that although some properties are shared across different s&%ﬁés study, we apply this exte_nded mlethod to investigate the
gions, the distribution of several parameters is suggestive of hierBFOCESSING of natural sounds in the birdsong system. .
chical processing. The birdsong system offers several advantages for studying
the processing of natural sounds. Songbirds display a remark-
able ability to process auditory information (for a review of the
birdsong system and behavior, see Konishi 1985). At birth,
songbirds are endowed with an inborn behavioral selectivity
To understand how sounds are heard and interpreted dodthe sounds of their own species (Marler 1991). Auditory
ultimately influence an organism’s behavior, it is important tmformation plays a critical role in song learning in juvenile
investigate the processing of natural sounds. However, littledengbirds and in song maintenance in adult birds and is an
known about the neural encoding of natural sounds. Thisimportant component of many social behaviors in songbirds.
partly because the majority of studies have used synthefior this highly sophisticated behavioral repertoire to be possi-
stimuli such as white noise or tones to characterize auditdrle, a wide variety of natural sounds, especially songs, must be
processing (for a review, see Eggermont et al. 1983c). Aletected andliscriminated by the auditory system of songbirds.
though these studies have provided a wealth of information @urrently, theneural basis of these behaviorp&orly understood.
the organization of the auditory pathway and on the responseAnatomical (Fortune and Margoliash 1992; Kelley and Not-
characteristics of auditory neurons, it has become increasingdpohm 1979; Vates et al. 1996) and physiological (Janata and
clear that it is difficult to use this knowledge to predict thdlargoliash 1999; Langner et al. 1981; Lewicki and Arthur

INTRODUCTION
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1996; Mello and Clayton 1994; Muller and Leppelsack 1985) In zebra finches, the stages of auditory processing in field L
experiments suggest that auditory forebrain areas such as fatd other auditory forebrain areas are also likely to contribute
L may contribute to the ability of songbirds to detect antb the response properties of “song-selective” neurons found in
discriminate a wide variety of complex natural sounds. In tHégh level auditory areas such as HVc, since these areas are the
anatomical chain of acoustical processing stages of the avifinary source of sensory input to HVc. Song-selective neu-
brain, the field L region lies between the thalamic audito?ﬁms, which respond more strongly to the bird’s own song
relay nucleus ovoidalis (Ov) and higher-level auditory ared8OS) than to even very similar auditory stimuli, have been

such as HVc and the medial portion of the caudal neostriaty#!l characterized in a number of studies (Margoliash 1983,
(NCM) (Vates et al. 1996) (Fig. 1). This location is analogous?86; Margoliash and Fortune 1992; Mooney 2000; Theunis-

to the location of auditory cortex in mammals. As in th&®n and Doupe 1998; Volman 1993). However, the earlier

primary auditory areas of many other animals, field L in zebifA9es of auditor_y processing that may participate in the gen-
erﬁatmn of such highly selective neurons have only begun to be

finches and other birds displays a tonotopic organizatiq ; . .
(Bonke et al. 1979; Gehr et al. 1999: Muller and Leppelsa xplored (Janata and Margoliash 1999; Lewicki and Arthur

1985; Zaretsky and Konishi 1976). Based on Nissl and Golgig'sar 4 systematic study of the stimulus-response function

staining studies, the field L region has been divided into & 5,ditory forebrain neurons has not been undertaken with
subregions called L2a, L2b, L1, L3, and L (Fortune and Mafara) sounds. Thus several interesting questions remain to be
goliash 1992). Neuro-anatomical tracer studies have showggressed. To what features of natural sounds do auditory
that the thalamic input from Ov projects strongly to area L2grebrain neurons respond? What are the characteristic spectral
and L2b and more weakly to L1 and L3. L2a projects stronglnd temporal parameters of such features? Do the distributions
to L1 and L3, and all field L regions project to cHV (Fig. 1) of parameters indicate the emergence of increasingly complex
features in the auditory forebrain? In this paper, we address
these questions by obtaining the STRFs for auditory forebrain
neurons using a large ensemble of conspecific songs (CONS)

A and extracting several parameters from the STRFs to assess
............................. multiple aspects of the processing of songs in the auditory
shelf forebrain.

METHODS

NIf Electrophysiology

adult male zebra finches in acute experiments. Extracellular wave-
forms were obtained using parylene-coated tungsten electrodes (re-
sistance 1-3 M) that were inserted into the neostriatum of the bird
cHV at locations that were previously marked with stereotaxic measure-
ments. The extracellular waveforms were transformed into spike
trains, using a window discriminator, by windowing the largest action
potential. Waveforms from successive spikes in the window were
examined on a fast time base to estimate the number of units. Cases
where the waveform had a single reliable and stereotyped spike shape
* L1 L3 were classified as single units. Multiunit recordings consisted of spike
. waveforms that could be easily distinguished from background activ-

v Field L ity but not from each other. Single units (18/62) or small multiunit

L2a <« L2b clusters consisting of two to five neurons (44/62) were recorded in this
manner. We did not observe any significant differences in our results
A for these two groups (se&suLTy. At the end of the experiment, the
bird was deeply anesthetized and transcardially perfused. The loca-
tions of the recordings were verified histologically in Nissl-stained
brain sections. The location of the sites was classified into anatomical
Thalamic Input subregions of field L as described in Fortune and Margoliash (1992).
We considered L and L2b as a single composite region since no clear

Fic. 1. Schematic of auditory forebrain connectivity. The figure illustrat - . .
the source of thalamic input to the auditory forebrain and connections betw e(l)’lrder between these two regions was apparent. We will refer to this

the different auditory forebrain region (Vates et al. 1996). Based on Nissl| aﬁBmPOS'te region as L2_b. The data.presented _here were _Obta'ned f_rom
Golgi staining studies, the field L region has been divided into five subregioh® Pirds and 62 recording sites (6 in L2a, 21 in L2b, 13in L1, 16 in
called L2a, L2b, L1, L3, and L (Fortune and Margoliash 1992). Subregion L4a3 and 6 in cHV). (For a more detailed description of recording
receives a strong thalamic projection, whereas subregions L1 and L3 recdivethods, see Theunissen and Doupe 1998; Theunissen et al. 2000.)
weaker thalamic projections. L2b and L were considered as a composite region

(seemeTHODS). Part of this composite region also receives a strong thalamic . .

projection. Subregions in field L are reciprocally connected to other subregioﬁ&lmuII

in field L, as shown £), and to the overlying area cHV. Possible sources of . . . .
auditory input to high level area HVc are directly from L1 and L3 through the An ensemble of 20 conspecific songs, previously used in Theunis-
underlying shelf region and indirectly from field L through areas caud&en et al. (2000), was used to obtain neural responses in the auditory
hyperstriatum ventrale (cHV) and nucleus interfacialis (NIf). forebrain of each bird. The same set of conspecific songs was used in

T All physiological recordings were done in urethan-anesthetized
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all our experiments. For each bird, we added the BOS to this ensembteered(j) is the value when thggh song is deletedy(.) is the average
giving a total of 21 songs. Stimuli were played at a peak intensity of all 6(j), andn is the number of songs in the ensemble. The standard
80 dB SPL and randomly interleaved to obtain 10 trials of responsesor was obtained by taking the square root of the variance.

to each song in the ensemble. The average song duration was 2.1 s. Aﬁigure 2 shows the raw STRF obtained from a site in L2a, and
of the songs, including BOS, were used to compute robust estimatgg. 2B shows the jackknife standard error for this STRF.

of stimulus ensemble properties such as the power spectrum angq display the significant part of the STRF, we first estimated
autocorrelation matrix, as previously described in Theunissen et @e noise level in the raw STRFs using a singular value decompo-
(2000). We did not separately characterize the STRFs in responsgigyn (SVD) technique. The SVD decomposes the STRF into a
the BOS in this study, since a reliable estimate of the STRF (S%ighted sum of a number of terms, each of which is an outer
following text) requires much more data than we had for the Boac/foduct of a function of time and a function of frequency. The
alone. Moreover, this calculation would also lead to significant met jeights corresponding to each of the terms are the singular values
odological difficulties, because the BOS alone samples only a Vefljtained from the SVD. For an ideal, completely noise-free STRF
small part of stimulus space (Theunissen et al. 2000). To compare {hg nonzero singular values can be used to reconstruct the STRF
responses of neurons to BOS versus the other songs in the ensemigoyt any loss of information. In practice, due to noise in the
we used the dmeasure of selectivity, previously used to quantifisstimation of the STRF, the singular values do not drop abruptly to
song selectivity in other areas of the song system (Janata and Mafro puyt tail off gradually. We therefore compared the SVD ob-
goliash 1999; Theunissen and Doupe 1998). We did not detectghed from a window (width, 100 ms) containing all of the

difference in response to BOS over the other soRgs 0.4, 1 sample  strycture in the STRF to the SVD obtained from a window repre-

sign test). Our observation is consistent with previous studies, whlggming noise (a 100-ms window from the acausal portion of the

have found the majority of field L neurons to be unselective for théTRE "corresponding to stimulus following spikes). The singular
BOS compared with other conspecific songs or manipulations of t9g|es obtained from the raw STRF that exceeded the maximal
BOS such as reversed BOS and syllable order reversed BOS (Jagg{gular value obtained from the noise were used to reconstruct the

and Margoliash 1999; Lewicki and Arthur 1996). STRF (Fig. 2). We found that this method effectively filtered out
the noise in the raw STRFs. Then, to illustrate the significance of
STRE calculation the different regions of the STRF, we show the contours for one

and two times the significance level superimposed on these recon-

A detailed description of the calculation of STRFs from naturatructed STRFs. As a conservative estimate, we defined the sig-
sounds can be found in Theunissen et al. (2000). This is briefijficance level to be the maximal jackknife standard error for the
summarized here. We used an invertible spectrographic representaidiRF.
of sound in which sound is first decomposed by passing it through a
set of Gaussian filters of 250 Hz width (SD) spanning center frequen- o
cies between 250 and 8,000 Hz. The sound is then represented by &£ggameters describing STRFs
of functions of times;, (t), wheres(t) is taken to be the log of the ) o
amplitude envelope of the signal in the frequency barkhe STRF We obtained several parameters from each STRF characterizing its

is defined as the multi-dimensional linear Volterra filkg, (t) such temporal and spectral properties. Similar parameters have been ob-
that tained from STRFs in the auditory (Depireux et al. 2001; Hermes et

al. 1981, 1982; Keller and Takahashi 2000; Kim and Young 1994) as
f well as visual (Cai et al. 1997) domains. The time to pélak () was
Fod® = O, | h(Ds(t — ndr defined as the time to the absolute maximal value of the STRF. We
i1 also used the STRF to directly estimate the temporal characteristics of
each neuron’s processing of amplitude envelopes of songs. We call
wherer () is the predicted firing rate and nf is the total number ofhis parameter the best modulation frequency (BMF). To obtain the
frequency bands;, () is found by requiring that,, (t) be as close to BMF, we took a slice through the maximal value of the STRF along
possible as..(t), the estimated firing rate obtained from a peristimuthe temporal dimension and obtained the peak of the power spectral
lus time histogram (PSTH). In the frequency domain, the solution f@lensity of this slice (Fig. B). The power spectral density was esti-
the set ofh;, for each frequencyv, can be written in vector notation mated using a fast Fourier transform with a Hanning window. As
as defined here, this measure may differ from the conventional BMF,
- R which is obtained from neural responses to simple amplitude modu-
Hy=As - G lated tone bursts, using a range of AM frequencies. To quantify more

whereA,, is the stimulus autocorrelation matrix af, is the cross- spectral characteristics of neural responses, we took a slice through

; ; . . ; the maximal value of the STRF along the frequency dimension to
correlation between the spike trains and the stimulus amplltudesﬁf ) . .
each band. The normalization of the cross-correlation by the stimu tain the peak frequency (CF) and a width at half-maximh (e

autocorrelation matrix corrects for the spectral-temporal correlatioH§g€1 a qfaél:lté//\;/actor, %eflnec: asfthﬁ Penak fre?uenc%/r Cli';"ﬂ?nd b)f’ ttt:]e
in the stimulus. A detailed description of the numerical paramet Q= » as ameasure of sharpness of spectral tuning ot the

used in our calculations can be found in Theunissen et al. (2000). ( gest spectrgl peak. Th.e.excitatory and inhibitory peak amplitudes
' y e the maximal and minimal values of the STRF, respectively.

a recent extension of this method to visual neurons, see Theunisse‘f’f‘g\/e also used the SVD of the STRF to assess the degree of the

al. 2001.) me-frequency separability of the STRF. Similar methods have been

To determine the significance of regions in the STRFs obtained, d in the visual svstem to describe the space-time inseparability of
used a jackknife resampling method where STRFs were calculated {gF¢ ' the visual sy 10 describe the space-ime inseparability
spatio-temporal receptive fields of visual neurons (De Valois and

multiple subsets of the conspecific song ensemble that were obtai 8taris 1098; Jagadeesh et al. 1997; Kontsevich 1995) and the

by deleting one song at a time from the complete ensemble. : ; . . :
variance for each spectral-temporal bin in the STRF estimate wigduency-time inseparability of auditory neurons (Depireux et al.
calculated from this set of STRFs using the jackknife formula 01). By deflnltlc_)n, a s_eparable STRF. can be expressed as a single
product of a function of time and a function of frequency. Thus for an
n—1 ideal separable STRF, only one of the singular values obtained from
var=—-— > 16) — 60)F the SVD should be nonzero. An index of separability could therefore
j be defined as the magnitude of the leading singular value relative to
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FIc. 2. Example of a spectral temporal receptive field (STRF) and significance calcukatitwe. raw STRF in subregion L2a
(site 14.10; the number before the decimal indicates the bird, and the number after the decimal the neuronal site) obtained from
the neural responses to a large ensemble of conspecific sBngise SE of the STRF estimate calculated using a jackknife
resampling method (se&THoDS). C: the singular values obtained from the STRIF&nd the noiseX; seemeTHODS). D: the STRF
reconstructed using singular values above the noise level shown in the €-(s@eveTHODS). To display the level of significance
for the different regions of the STRF, we show the contours corresponding to 1 and 2 times the significance level (- - - and —,
respectively; seeeTHoDs for definition) superimposed on the STRFs and plot the regions below significance in lighter colors.

the sum of all the singular values. To avoid the effects of the noise t@IC for bias and obtained the standard error for the CC using a
in the singular values in assessing the separability of the STRFs, jekknife resampling method.
defined a separability index Sl as follows

RESULTS
S
Sl=— The goal of this study was to investigate the processing of
DE natural sounds in the songbird auditory forebrain. We began by
i1 systematically characterizing the stimulus-response function of

auditory forebrain neurons in response to natural sounds. We
wheres; is theith singular value with all singular values measuregbtained STRFs from the responses of auditory forebrain neu-
relative to the singular valug, corresponding to the noise level. Wergns in adult male zebra finches to a large ensemble of zebra
chosen = 4 because in all cases the first three singular valugg,cn songs. These STRFs show the spectral-temporal features
accounted well for the STRF structure. of songs to which auditory forebrain neurons respond and

describe the optimal linear component of the response to songs.
Prediction of responses By extracting a variety of parameters from the STRFs, we were

able to quantify several aspects of the processing of natural

The method for obtaining a prediction of neural responses using t@unds in the auditory forebrain. First, we obtained multiple

STRF is described in detail in Theunissen et al. (2000) and o TRF parameters to describe the spectral and temporal prop-
briefly summarized here. The predicted firing rate was obtained byties of features important to forebrain auditory neurons.
convolving the STRF with the stimulus and rectifying and scaling th&econd, we characterized the spectral-temporal separability of
result to minimize the squared error between the predicted rate andghe STRFs. Third, we assessed the linearity versus nonlinearity
firing rates estimated from the actual data. To obtain the predictgdli,o heuronal encoding of songs by quantifying the quality of

firing rate for each song, we used the STRF calculated from all so . . .
in the ensemble except for the song used to generate the stimur‘% sponse predictions obtained from the STRF model. Finally,

response data being tested. We quantified the quality of the predict 8nbegin tQ assess the_ relationship between fgnctional proper-
by calculating the cross-correlation coefficient (CC) between ti{i€S Of auditory forebrain neurons and conventional anatomical

predicted and estimated firing rates. The measured firing rate wa#divisions of auditory areas, we examined how the STRF
obtained by smoothing the PSTH (but not the predicted firing ratpprameters in our data set mapped onto different subregions of
with a Hanning window that gave the maximal CC. We corrected tlihe auditory forebrain.
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L L L UL brain. The figure shows examples of spike rasters and
peristimulus time histograms (PSTHs) of field L and
e cHV neurons in response to zebra finch songs. The
Is

[
oscillograms of the songs, a representation of the
sound pressure level as a function of time, are shown
below the PSTH.Bottom responses from sites in

subregions L2a (site 21.2, song zfa-24.5) and L2b

HV
Imas an i of

[ - ALLR LI m b pLeran Ll | 1 LIm 101 NIl R 1 1 1

T T VI T N [T T I T T I I | (site 20.4, song zfa-25.6) in field Middle: re-

T O N T AT TN T TN T I T TR R T TV : sponses from sites in L1 (site 18.6, song zfa-24.5) and

T 7Y ST ? 1 B T Y TN T TN T B L3 _(Site 14.12, song zfa-24.5Top responses from

T T T T EEIT L B . e T BN R N B AT B ; region cHV (site 27.2A, song uc-11). The examples

(TR T 1u from L2a, L2b, and L1 are data from single units, and
11 O T (V| L1 1 1 Ll 11111 | - 1

the examples from L3 and cHV are data from small

L1 & L3 e clusters of neurons (se&THoDS). We also compared
= the mean firing rates across the subregions (although
§ S here a caveat is that our data included both single

— units and small clusters of units; se&THoDs and
500 ms RESULTS. Overall, subregions in field L had relatively
D00 0 CWEEEEEE WEH VOO RN 0 DE [TTTIN | TR T Tt L AR Ty | hlgh mean firing rates above the background firing
[T T T T ] B EE T T T T TE TR IR rate, with L2a being the highest (15 4 spikes/s),
(THT TN e T T TN (e T T NETeT T T i i
R Tt TR B AT T B PR followed by subregions L1 (11 4_sp|kes/s), L2b
T m:ﬂn:: T T TN SN ST T T T T T | (9 = 2 spikes/s), and L3 (& 2 spikes/s). In com-
TN T TTTTTIT ST WA T 1 T WY W ¥ T T R TR TR T T parison, mean rates were lower in area cHV+(3l
S T 11171 ¥ T 71T —— TS TN T T T TR T T T T T T spikes/s). The difference in the mean firing rates
between areas was not statistically significant.
L2a lE L2b =
—— .WWUWMMM N | Is
Eoaaman iasin o o2 - Rt L “
Neural responses sliding a window (Fig. 8) containing the time-reversed STRF

We obtained neural responses from throughout the audit 'Izylg' 4C) over the stimulus and obtaining a moment to moment

S . ) : ediction of the response. In each window, the stimulus is
forebrain including subregions L2a, L2b, L1, and L3 of field lweighted by the oveﬁapping part of the STRF, point-wise at

and the overlying region of cHV. Figure 3 illustrates exampléeg g ., esnonding time and frequency, and the results from all
of the trial-by-trial and average neural responses, one fr ints in the window are summed to obtain the predicted

eag? Oif Lhe f:cv;-,} ?cljjbl_rerglons.ngsdcatr: tr)]elseten, t?]e S't_?_ﬁ 'nrr% ponse (Fig.@). Mathematically, this is performing a con-
subregions of Tie esponded strongly 10 songs. 1N€ rgs) iinn operation. Intuitively, the time-reversed STRF can
sponse in the site from cHV was weaker and more variable

comparison to field L. The average firing rate in the auditortwerefore be _thought OT as the most effective stiml_JIus that
forebrain was 9+ 1 (éE) spikes/s Fould drive this neuron, if the neuron was completely linear. In

P ' this example drawn from our data from region L2a, the STRF,
which has a relatively simple structure, provides a good pre-
STRF diction of the neural response to a very complex auditory

Songs have a highly complex spectral-temporal structugmulus (the goodness of the linear STRF model is quantified
including strong time-varying correlations across different fr&nd discussed ihinearity versus nonlinearily
guencies. Consequently, as illustrated in FigAdndB, it is
difficult to assess to what spectral-temporal features of songsature analysis of songs by auditory forebrain neurons
neurons respond, simply by comparing the song, in its spec-
trographic representation (FigB} and the neural response Figure 5 shows 15 examples of STRFs obtained from the
(Fig. 4A). The STRF method addresses this difficulty by anauditory forebrain (3 from each of the different subregions in
lyzing the stimulus preceding each neural response, for mdisid L and cHV), which illustrate the range of STRFs we
stimuli and many spikes, and calculating what weightings observed in our data. As can be seen, the STRFs in Fig. 5,
the spectral and temporal components of the stimuli produaed D (subregions L2a and L2b, respectively), indicate sensi-
the best linear estimate of the actual neural response [for théty to a simple, narrowband component of song. In contrast,
mathematical definition of the STRF used in this paper, semich more complex features are observed in some other ex-
MeTHoDs and Theunissen et al. (2000); for discussions on tlnples (Fig. 5F, |, K, L, andO). For instance, the STRF in
interpretation of the STRF, see Eggermont et al. (1983c); Kleftig. 5L (subregion L3) shows an excitatory-inhibitory compo-
et al. (2000); Theunissen et al. (2000, 2001)]. The resultimgnt that reverses in time, and the STRF in Fi@.(Subregion
STRF can be thought of as a filter that characterizes the lineatV) shows a multi-peaked frequency stack. Figuie (8ub-
component of the stimulus-response function of auditory foreegion L3) shows another STRF with a complex feature, a
brain neurons and that can reveal the features of song crititl@quency sweep. A further observation that can be made from
to the neuronal response. The relationship between the STIRE. 5 is the difference in the time-scales of the STRFs. The
and the neural response to a particular stimulus can be seerSBRF in Fig. A from L2a has a short delay and width. In
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1450 K. SEN, F. E. THEUNISSEN, AND A. J. DOUPE

simple sounds such as white noise or tone pips. However, we
extracted these parameters directly from the STRFs obtained
with natural sounds to quantify several aspects of the process-
ing of these sounds. This was an important step since we had
previously observed that the STRFs obtained from natural
sounds could be dramatically different from the STRFs ob-
tained from simple stimuli for auditory forebrain neurons
(Theunissen et al. 2000).

Figure 6 illustrates the parameters for a particular STRF in
subregion L2a. As illustrated in the figure, the parameters are
obtained from the spectral and temporal slices of the STRF
taken along its maximal value. We obtained the time to peak
(Tpear, Which is a measure of delay between the stimulus and
response (Fig.®); the Q factor, defined as the ratio of the best
frequency to the width at half-maximum, which is a measure of
the sharpness of spectral tuning of the largest spectral peak
(Fig. 6C); the BMF, which is defined as the frequency corre-
sponding to the peak of the power spectral density and is a
measure of the frequency of amplitude modulations (AM) in
songs that drive neurons best (Fid)6 and the ratio of the
excitatory and inhibitory peak amplitudes of the STRF (see
meTHoDs for definitions). Figure 5 can be used to illustrate how
the values of these parameters correspond to the particular
STRF from which they were obtained. For example, Fig. 5

' shows an STRF that has a short delay with,g,,of 11 ms,
50 ms 0 whereas the STRF shown in Fig\%as a much longer delay
D with @ T,eq0f 55 ms. The STRFs in Fig. 8 andL, have BMF
I : ] values of 70 and 10 Hz, indicating preferences for relatively
high and low modulation frequencies, respectively. An exam-
ple of an STRF that has relatively sharp spectral tuning with a

A Response

100 Hz

Frequency (kHz) ©d
N oA O ®

@)

Frequency (kHz)
N A~ N oo

N Q value of 3.2 is shown in Fig.B whereas Fig. 6 shows an
en STRF that has a more broadly tuned spectral peak wigh a
\ k A ﬂ‘ _ M | \ 1R value of 0.71.
: AnLy NALLE BIEF AW Figure 7 shows the distribution of these parameters for the
Predicted Response auditory forebrain and quantifies the diversity of processing of

songs in the auditory forebrain, confirming our qualitative
FIG. 4. lllustration of the STRF model. The STRF can be thought of as 9 y 9 4

linear filter that specifies how spectral and temporal components of the stiﬁpservat'ons In F'Q- 5 AlthOUgﬁpeaK(F'g' 7A) rr;mged fro_m 7
ulus are weighted to produce the resporBehows a spectrographic repre-t0 55 ms, the majority of the sites we examined fell into an

sentation of a section of 1 of the songs in our ensemble. A window (showniintermediate range, consistent with the location of the auditory
the black rectangle) containing the time-reversed STRF (4C) is slid over thgrebrain between the auditory thalamus and HVc. The distri-

song. The overlapping parts of the song and the STRF are multiplied poipt-+: ; e
wise and summed together to obtain the prediction of the response to the s@ élon of the values for BMF (FIg.BD shows that the majority

(seevieTHoDS). The prediction; after rectification) can be compared with theOf SIt€S (“900/?) in our data set preferred re|ati_V9|Y_ lower
actual response] to assess the goodness of the STRF model (see sectionfsequency AM in songs<30 Hz). Almost half the sites in our

linearity vs. nonlinearity irresuLtsand Fig. 9). data (~48%) had aQ factor close to 1 (between 0.5 and 1.5),
o indicating that for many sites the width of the largest spectral
contrast, the STRFs in Fig. B,andO, from L3 and cHV show peak of the STRF was comparable to the peak frequency (Fig.
longer delays and are extended over much longer durationg; also see Fig. 6 andetHops). The ratio of excitatory and
Collectively, these STRFs illustrate the variety of ways ifhhibitory peaks of the STRFE(I ratio; Fig. D) was distrib-
which songs are analyzed by neurons in the auditory forebrgjfsd around a peak value at 1.3, indicating an approximate
and the wide range of time scales associated with this analygigiance between the relative magnitudes of the excitatory and
In the following sections, we quantify some of these qualltatlvighibitory peaks within a range around this value.
observations by examining a variety of parameters describingoyr data consisted of both single units as well as small

different aspects of the STRFs. clusters of units (seeeTHops). Although, in theory, if individ-
ual neurons close to each other differed markedly, complex
STRF parameters STRFs could be created simply by the simultaneous recording

of single units with different properties, we saw no evidence

To characterize some of the spectral-temporal propertiessafggesting that this was occurring. The range of complexity of

the STRFs and to quantify the differences between the STREERFs from single units was similar to that seen with the small

in different subregions, we first extracted several simple palusters (examples of STRFs obtained from single units are
rameters from each STRF. Such parameters have previowdtpwn in Figs. 5A, D, G, K,andL, and &). Moreover, we did

been used to characterize the response of auditory neuronadb observe a significant difference between single units and
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are shown.A-C. examples from subregion L2a (sites
21.2,14.11, and 27.4Ap-F: examples from subregion
L2b (sites 20.4, 26.2B, and 23.3B3—I: examples from
subregion L1 (sites 18.6, 18.7, and 14.3}L: examples
from subregion L3 (sites 25.2, 27.5B, and 27.4®)-O:
- 1 examples from subregion cHV (sites 14.2, 27.1A, and
27.2A). The examples i\, D, G, K,andL were from
L L1 single units (se&ETHODS). The STRFs display the spec-

‘ tral-temporal features of songs to which auditory fore-
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4 brain neurons respond. This figure illustrates the diverse

e range of features to which neurons responded in the

— y — . auditory forebrain. These range from simple features

0 50 100 O 50 100 O 50 100 showing narrowband components of song, as in the ex-
amples inA from subregion L2a an® from subregion
L2b, to more complex multi-peaked features ak finom

J K L subregion L3 an® from subregion cHV. The figure also

8 8 ) 8 shows the wide range of time scales of the features that
can be found in the auditory forebrain.
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clusters for any STRF parametd? & 0.8 for oo, P = 0.9 tures can be described as a product of a spectral and temporal
for BMF andQ; P = 0.5 forE-I ratio; Wilcoxon rank sum test). function, whereas inseparable features cannot be described in
this simple manner. Using the singular value decomposition
technique (SVD; se&etHops and Fig. 2), we analyzed the
separability of song-derived STRFs and defined a separability
A parameter that describes the complexity of STRFs is tiedex (SI) ranging from 0 to 1, with 1 indicating a fully
degree of separability in time and frequency. Separable fesparable STRF. We observed both separable and inseparable

Separability versus inseparability
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4 ol L P 1 g ol | Fic. 6. lllustration of parameters of the STRPs the
I O L % STRF from Fig. 2.B: illustration of the time to peak
BE ! (Thead Parameter, which was obtained from a slice along
. the temporal axis passing through the maximal point of
0 50 0 0.010.020.03 the STRFC: illustration of the peak (CF) and width\)
- : obtained from a slice along the spectral axis passing
B Time (ms) D 0 Amplitude through the maximal point of the STRF. The quality
- Toeak I ; factor,Q, which is a measure of the sharpness of spectral
0.03F pea ol |t tuning, is defined as C®. D: the power-spectral density
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= 0.02 I % o as the best modulation frequency (BMF).
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STRFs in the auditory forebrain. Figurd8hows an example indices (SI= 0.82 and 0.52, respectively). Figur&&hows
of an approximately separable STRF from subregion L2the broad distribution of Sis obtained from the auditory fore-
Figure 8 shows the STRF obtained using only the first conbrain for our entire data set. We did not observe a significant
ponent of the SVD of this STRF, and FigC8shows the difference between the SI distributions of single units and
difference between this first component and the full STRF. A&nall clusters of units in our dat® (= 0.3).
can be seen, the first component accounts for most of the ) )
structure of the full STRF, and thus this STRF is separabldnearity versus nonlinearity
This STRF had a Sl of 0.91. In contrast, Figl8;F, shows an  The STRF is a linear model in that it describes only the
example of an inseparable STRF from subregion L3, whidimear component of the neural encoding of the stimulus. Thus
contains a frequency sweep. Unlike the separable STRF in Fdgie can use the quality of the predictions of the neuronal
8, A—C, the difference (Fig. B) between the leading compo-responses obtained from the linear STRF model to assess the
nent and the full STRF is much larger in this case, and thisearity or nonlinearity of the neural encoding of the stimulus.
STRF had a Sl of 0.53. Figure B andK, shows additional We used the STRFs to obtain predictions of the neuronal
examples of STRFs with relatively high and low separabilitesponses to songs (seerHops) and quantified the quality of
the prediction by the correlation coefficient (CC) between an
40 estimation of the deterministic part of the actual response and
the response predicted by the STRF (seeHops) (see also
Theunissen et al. 2000). FiguréA $hows the estimated re-
sponse from the actual dat@) and predicted responsbdt-
tom) using the STRF shown on the right of the traces, to a
i section of the stimulus ensemble for a site in L2a. For this site,
0 20 40 60 00 20 40 60 80 a relatively good prediction could be obtained (GC0.68),
Tpeak (ms) BMF (Hz) indicating that a substantial component of the encoding of this
site was linear. However, this linear component varied over a
wide range for our data set (range of CCs: 0.07-0.72), indi-
2 20 cating both relatively linear as well as nonlinear encoding of
= songs. lllustrative examples with different values of CC are
® 10 shown in Fig. 9B—E These examples illustrate the range of
performance of the linear STRF model in being able to predict
00 5 % B 005 fe Bk the neural response. For example, in Fig.A9and B, the
Q " Edratio timing and widths as well as the relative amplitudes of 'Fhe
FiG. 7. Distribution of parameters of the STRFs in the auditory forebrai@-eaks and troughs in the responses app_ea_r to be We-” predicted.
A: distribution of T, B: distribution of BMF.C: distribution of Q. D: dis- igure & shows F_m exar_nple where the. timing and width of th.e
tribution of the ratio of excitatory and inhibitory peaks-( ratio). See Fig. 6 responses are still relatively well predicted but the STRF fails
andwveTHops for definitions of parameters and Table 1 for a summary.  to capture the relative amplitudes of the peaks and troughs in
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A STRF B Separable component C Difference
4 : 4 - 4 :
3r 37 3r
2t 1 2f :
A . 2
1F - 1 - L
o 50 0 50 0 FIG. 8. Separable and inseparable STRFs.
D E F 50 A: an example of a separable STRF from sub-
<4 4 4 region L2b (site 20.8, single unitl: the sepa-
E rable component of the STRF, which is ob-
=3r 3r 1 3r 1 tained from the leading term in the singular
oy value decomposition of the STRF and corre-
c2r 2 b 2 sponds to the outer product of the function of
% l time and the function of frequency associated
g 1 = 1§ ' 1 1 —E 4 with the largest singular value (seg&THODS).
i ; i 5 C: the difference between the original and the
separable component is shown. This STRF had
0 50 0 50 0 50 a separability index (SI; seesTHoDS) of 0.91.
Time (ms) D—F: same sequence of plots for an inseparable
STRF from subregion L3 (site 25.8) which had
a Sl of 0.53.G: distribution of separability
G 20 indices in the auditory forebrain.
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L
' 101
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the response. Figure B,andE, illustrates examples where theT,.,across the different subregions. We observed a significant
STRF makes errors in predicting the timing and width of theifference in the meaifi,.,.across the subregionB & 0.024,
response peaks and troughs as well. Figufes@ows the F = 3.0, ANOVA, see figure legend for further statisticE)e,x
distribution of CCs obtained for our entire data set. A compajras shortest in L2a (medh,.,.= 14 ms) and longest in cHV
ison of the distribution of CCs for single units and smal31 ms) with subregions L2b (20 ms), L1 (21 ms), and L3 (22
clusters of units did not indicate a significant differenBeX ms) showing intermediate values. This pattern indicates the
0.7). Table 1 summarizes the values of all the parameters WfRing for the processing of songs in the different subregions.

obtained from the STRFs. On average neurons in the thalamo-recipient area L2a re-

thc\aNSeTaFIQSFOx]e\iistcig?rteﬁgt\évg(\e/\tlﬂﬁrégghpg[ﬁgei/evrg gg;"’:ri]ri‘ﬁed dfrt %bnded fastest followed by the subsequent areas. The range of
pair-wise scatter plots of the parameters fo.r all pairs (data r}gﬁakm- regions L1, L3, and cHV was larger compar_ed_wnh thg
ge in L2a, indicating a more heterogeneous distribution in

shown), calculated the correlation coefficient between paragﬂése area(= 0.002, 0.001, and 0.0006 for L2a vs. the other

eters and the significance of the correlation coefficient (Fis feas, respectivelff, test with Bonferroni correction; see Table

ersr to z test). We found that many of the parameters were, Ses and ranges of values). We did not observe significant
significantly correlated with each other. These values are sUfierences in heterogeneity between the remaining areas.

marized in Table 2. In particulafpeqand BMF, Tyeq@nd CC, " 1ha guerage values of BMF (Fig. BY) showed a significant
BMF and CC, ancE-I ratio and CC were strongly Co”elateddifference agross subregiong (F %..0()))6 F = 4.1). \?Ve ob-

This suggests that short latency responses, short integral@f\eq a preference for high modulation frequencies in L2a

times, and a preponderance of excitation tended to CO-0C¢tfean BMF= 38 Hz) compared with lower modulation fre-
with increased linearity. quencies in L2b (21 Hz), L1 (22 Hz), L3 (15 Hz), and cHV (17
Hz). The inverse of the BMF parameter can be thought of as a
Mapping STRF parameters onto anatomical subregions  characteristic time scale of integration of songs. The average
values of this parameter indicated a short time scale of inte-
To begin to investigate the relationship between the fungration for sites in L2a (26 ms), followed by L1 (46 ms) and
tional properties of auditory forebrain neurons, as indicated hgb (48 ms), cHV (59 ms), and L3 (67 ms).
the STRF parameters, and conventional anatomical subdiviA comparison of theQ factor (seevetHobs and Fig. 1)
sions of the auditory forebrain, we compared the STRF paradid not show a significant differenc® (= 0.17) across subre-
eters in our data across the different subregions of the auditgigns. Thus on average the features obtained from the different
forebrain: L2a, L2b, L1, L3, and cHV. Figure AGhows the subregions were comparable in the sharpness of spectral tuning
mean and the inter-quartile range of values for the parametérthe largest spectral peak (see Table 1).
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FIG. 9. Prediction of neural responses. In the examples
shown, thetop trace illustrates the estimated PSTH for the
neural responses from a site and Hwttom tracellustrates the
predicted PSTH obtained from the STRF for this site for the
same segment of the data. The STRF used to obtain the pre-
diction is displayed on the right of each set of traces. One
example from each subregion is shown, spanning a range of
correlation coefficients (CCs) obtained between the actual and
predicted responses for our entire dataAeéxample from L2a
(site 26.5A). The scale bar for the time axis in this and all other
traces is 200 ms. The scale bars for the actual and predicted
responses are 200 and 100 Hz, respectively. The CC between
the estimated PSTH and the predicted PSTH for this site was
0.68.B: example from L1 (site 18.6; single unit; scale bars: 100
and 50 Hz) with CC= 0.70.C: example from L2b (site 23.2A;
scale bars: 20 and 10 Hz) with GE0.47.D: example from L3
(site 27.5B, single unit, scale bars 20 and 10 Hz) with €C
0.26.E: example from cHV (site 27.1A, scale bars 5 and 10 Hz)
with CC = 0.14. F: distribution of CCs in the auditory
forebrain.

CC=0.14 0 50 100
Time (ms)

N
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-
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0 02040608
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We compared the magnitudes of peak excitatory and inhibHV contained the sites that were the most spectral temporally
itory STRF amplitudes in each of the auditory areas. As can beseparable, there was no statistically significant difference in
seen by comparing Fig. 18,andF, the ratios of the excitatory the mean Sl across the different subregidhs=(0.8; see Table
to inhibitory peak in the different subregions were approxi for values).
mately equal P = 0.7; see Table 1) even though both the Figure 1@ shows the mean values for the CC across the
excitatory and inhibitory amplitudes varied significantly acrogdifferent subregions. These values indicate a significant differ-
the subregionsR = 0.02). ence across subregionB & 0.023,F = 3.1) with the CCs

When we examined the Sl for different subregions (Fidneing highest in L2a (mean C& 0.63) and significantly
10D), we found that although the subregions L2b, L1, L3, andifferent from the CCs in all the other regions, followed by L1

TABLE 1. Summary of parameters obtained from STRFs across different subregions

0

L2a L2b L1 L3 cHV
Tpear MS 14 = 1 (11-16) 20+ 1 (12-40) 21+ 3 (12-41) 22+ 3 (7-50) 31= 6 (17-55)
BMF, Hz 38+ 9 (20-70) 21+ 2 (10-50) 22+ 4 (5-50) 15+ 2 (5-30) 17+ 4 (5-30)
Q 1.6 = 0.4 (0.7-3.2) 1.8- 0.3 (0.8-5.9) 2.8- 0.5 (1.1-6.1) 2.5- 0.5 (0.4-7.8) 1.3- 0.3 (0.6-2.8)
E-I ratio 1.7+ 0.1 (1.4-2.1) 1.4 0.1 (0.7-2.6) 1.6 0.2 (0.7-2.5) 1.4 0.1 (0.7-2.3) 1.3- 0.2 (0.7-2.3)
S| 0.71+ 0.03 (0.65-0.82)  0.68& 0.03 (0.47-0.91)  0.76: 0.03 (0.58-0.91)  0.66: 0.03 (0.49-0.83)  0.66: 0.04 (0.56-0.84)
cc 0.63+ 0.02 (0.58-0.68)  0.44 0.04 (0.11-0.70)  0.48& 0.05(0.16-0.72)  0.3% 0.05 (0.07-0.64)  0.3% 0.06 (0.14-0.53)

The table shows the mean SE and ranges (in parentheses) for the parameters: time to igall, (best modulation frequency (BMF), quality factor of the
largest spectral peakd], the ratio of the excitatory to inhibitory peak+ ratio), separability index (SI), and correlation coefficient (CC) between the estimated
response from the actual data and the prediction of the response obtained from the spectral temporal receptive field (8FRIEpsesnd RESULTS for
definition of parameters).
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TABLE 2. Correlations between STRF parameters brain by extracting several parameters from the STRFs. Using
_ the parameter ., We characterized the timing of responses
BMF Q E-l ratio S CC in the auditory forebrain. The range of values indicated both
Treme —0.46* 0.05 —0.37* —0.08 —0.44* fast and rel_atively slower processing of song features.
BME _0.25 0.28* 0.25 0.64*  Another important temporal parameter of complex sounds,
Q -0.09 —0.09 —-0.25 such as speech and birdsong, is the modulation in the ampli-
gl-l ratio 0.22 (?fsg* tude envelope of sounds. Complex sounds typically contain a

broad range of modulation frequencies. The BMF parameter,
The table shows the correlation coefficient between each pair of parame@graoted from the STRF, allowed us to characterize the pre-

for our entire data set. The asterisks indicate the correlation coefficients thafred modulation frequency for auditory forebrain neurons
were significant® < 0.05). and showed that, as a group, auditory forebrain neurons could

(0.48), L2b (0.44), L3 (0.37), and cHV (0.37). Although the A 40 B
sample size is small, the range of CCs in L2a was also sign
icantly smaller compared with L2b, L1, and L3, indicating
more heterogeneous distribution in these regidhs=(0.002,
0.004, 0.002, respectively; see Table 1 for ranges). There we
no significant differences in heterogeneity between the regio
L2b, L1, L3, and cHV. These results suggest a difference in t 0
nonlinear component of the neural encoding of songs in di C
ferent regions, with region L2a showing relatively linear en 4t
coding of songs and subsequent areas showing linear as wel
nonlinear encoding of songs.

60
L L i L i 0 A 1 L 1 '
L2a L2b L1 L3 cHV L2a L2b L1 L3 cHV
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DISCUSSION P ¢ om o osba— o .
: : : . L2a L2b L1 L3 cHV '
An important goal of auditory neuroscience is to understar ¢ ) F fea Lo L1 13 eV
the processing of natural sounds by auditory neurons, whin_ﬁ L ] < T
may have evolved to efficiently encode these sounds (Attiig 5 0.03F

and Schreiner 1998; Rieke et al. 1995) and which respor& 0.04f
much more strongly to such sounds in higher-level auditor g
areas (Margoliash 1983; Rauschecker et al. 1995; Theuniss |
et al. 2000; Wang et al. 1995). However, due to the complexit ol
of natural sounds such as human speech and birdsong, it | L2a 12b L1 L3 cHV
been difficult to obtain the stimulus-response properties (G 0.8—

auditory neurons with such sounds using conventional met
ods. Previously, the STRF approach has been successft
employed to characterize the responses of auditory neurons O g4}
synthetic sounds (deCharms et al. 1998; Depireux et al. 20C
Eggermont et al. 1983a,c; Escabi et al. 1998; Keller an %2f =
Takahashi 2000; Klein et al. 2000; Kowalski et al. 1996a,b). | L2a L2b L1 L3 cHV

this study, we used our recent extension of the STRF approachs 10. pistribution of STRF parameters for the different regions in the
(Theunissen and Doupe 1998; Theunissen et al. 2000, 20013dditory forebrain. Figure shows the mean values and the inter-quartile range

analyze the processing of natural sounds in the songbird audicalues (from the 25th to 75th percentile) of the distributioi for different
tory forebrain parameters of the STRF for each subregion (see Fig. 6natdops for

. . . definitions). The parameters for the respective subregions are plotted in the
.In the few physiological StUd'.eS t.hat have been done to d‘i‘;‘%@er: L2a, L2b, L1, L3, and cHV for all the parameters. The differences in the
with small sets of natural vocalizations and complex synthetigan values of the parameters across different regions were found to be
sounds, auditory neurons in field L were found to be quimﬁstically significant inA, B, andE-G (seeResULTY. A: T, 0f the STRF,
diverse, ranging from broadly responsive to selective (Langri#ch is a measure of t(he delay ?:?t‘;]"ee”tthet)s_“r;“'“ts and response. Mulliple
) ) ; ir-wise comparisons (post hoc Fisher’s test) indicated the following regions
et al. 1981; Muller and Leppelsack 1985; Scheich et al. 1973, ' idcanty different: L2a/cHV, L2b/cHV, L1/cHV, and L3/cHE: the
Uno et al. 1991). However, these studies could not identify thgst modulation frequency (BMF), which is a measure of the preferred fre-
components of the stimuli responsible for the neuronal rgdency of temporal modulations in the amplitude envelope of songs. The
sponse. Our approach here was to use the extended STRerse of this frequency is a measure of the characteristic time scale of

; ; ; sintegration. The regions that showed pair-wise significant differences were:
method to investigate directly the features of songs to whi alL2b, L2all 1, L2a/l3, and L2alcH\C: the quality factor Q), which is a

aUd'tory forebrain neurons_reSponded' . measure of the sharpness of spectral tunDgdistribution of separability
. Our resullts revealed a dl\{erse range of processing Of SOI@fces across different regions of the auditory forebr&@rand F: the exci-
in the auditory forebrain with some neurons responding tatory and inhibitory peak amplitudes. The regions that showed pair-wise
simple tonal components of songs and others respondingS‘&ﬁ“ﬁca”t differences for both the excitatory and inhibitory peak amplitudes

more complex spectral-temporal structures such as frequslﬁlﬁf: L1/L2b, L1/L3, and L2a/L3G: correlation coefficients between pre-

hibitory
2 =
e 8

ol— i :
L2a 1L2b L1 L3 cHV

f

- -~ ed and actual responses across different regions in the auditory forebrain.
sweeps and multi-peaked frequency stacks. We quantified MiHe regions that showed a pair-wise significant difference were: L2a/L2b,
tiple aspects of the processing of songs in the auditory fonea/L3, and L2a/cHV.
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encode a broad range of AM frequencies. The majority of the The auditory forebrain showed narrowly as well as broadly
neurons, however, preferred lower modulation frequenciganed STRFs, suggesting that neurons in this region analyze
approximately matching the dominant range of modulaticgbngs at a variety of spectral resolutions. Analysis over a range
frequencies found in songs (Theunissen et al. 2000). By itself,spectral resolutions is thought to be a prominent principle of
the value of the BMF does not necessarily imply sharp banghe organization of mammalian auditory cortex as well (Schrei-
pass tuning to an AM frequency corresponding to the BMF. H{fgr et al. 2000).

is, nevertheless, a useful indicator of the AM frequency in e found that the ratio of the excitatory and inhibitory peaks
songs that is most effective in driving neurons. In addition, th& the STRFs was approximately balanced in the auditory
¥alue ﬁf the BMF par?meter obtained he[)e <_:ou(|jd b.ehd'f.ferel'btrebrain, which may reflect properties of the local circuitry in
rom the conventional BMF parameter obtained with simplg,o 5 ,ditory forebrain. Models of auditory neurons have sug-

amplitude modulated tone bursts because, as we found meg_ggted how neural responses can be shaped by the local exci-

previous study, many auditory forebrain neurons show diff %L(;ry and inhibitory circuitry (Nelken and Young 1997;

ent stimulus-response properties when probed with natu : . L X
versus synthetic sounds (Theunissen et al. 2000). The inve mma 1989). STRFs with excitatory and inhibitory regions

of the BMF parameter also gave us an indication of the tinfé’md be the result of such excitatory and _|nh_|b_|tory Interac-
scale of integration for auditory forebrain neurons. High-levdPns: Such a balance of excitatory and inhibitory regions,
auditory neurons displaying context dependent phenomeiganized in an appropriate way in the time-frequency domain,
such as combination-sensitivity have often been found to inf@Ruld result in more temporally phasic and/or more spectrally
grate their inputs over a relatively long duration (Lewicki angelective responses. For example, in cases in which the exci-
Arthur 1996; Margoliash 1983; Margoliash and Fortune 199%8tory region precedes the inhibitory region, response would be
Ohlemiller et al. 1996). In our data, the time scales of thgitiated by the activation of the excitatory region but subse-
features to which neurons responded in some of the auditéiyently terminated or attenuated by the activation of the in-
forebrain regions were surprisingly long, in some cases shohibitory region, thus producing a more temporally phasic re-
ing integration times on the order of 100 ms. Integration a&fponse. One possible way to directly investigate the relation
input over such a long duration could contribute to the knowsetween the STRF and the local excitatory and inhibitory
sensitivity of some field L neurons to combinations of songrcuitry in the auditory forebrain would be to manipulate the
syllables as well as to the selectivity for BOS seen in high levaimounts of inhibition or excitation in these areas and examine
auditory areas (Lewicki and Arthur 1996). the resultant changes in the STRFs.

The quality of the predictions of neural responses obtainedWe observed both separable and inseparable STRFs in the
from the STRF model, as assessed by the CC, indicated thalitory forebrain. Neurons with inseparable STRFs could be
presence of both relatively linear as well as more nonlineased to detect spectral temporal structures of sound that change
encoding of songs in the auditory forebrain. Here, it is impowith time, such as frequency sweeps, analogous to direction
tant to point out that, although we were able to estimate tkelective neurons found in the visual system. Such STRFs
magnitude of the nonlinear component of the stimulus-reright be important in the analysis of songs, since frequency
sponse function by assessing the quality of predictions abweeps are prominent in many zebra finch songs. In the visual
tained from the linear STRF model, this model could natystem, a simple model for motion-sensitive neurons was pro-
provide any information about the exact nature of the nonliposed, in which two spatio-temporally separable receptive
earity. We have previously shown that part of the nonlinearifields combine in quadrature to produce a spatio-temporally
across different stimulus ensembles can be described by cmseparable receptive field (Adelson and Bergen 1985; Watson
structing separate STRFs for each stimulus ensemble (Theunisd Ahumada 1985). In the auditory system, a similar principle
sen et al. 2000). This is analogous to constructing a piece-wgaild apply in the spectral-temporal domain. Thus the insep-
linear approximation of a nonlinear function. However, dearable STRFs found in the auditory forebrain could be gener-
scribing the residual nonlinearities within a particular stimulusted by combining inputs from the separable STRFs in the
ensemble remains an important challenge for current meth@dsne or previous regions.
in auditory neuroscience. In principle, one could include higher- The preceding discussion highlights the diversity of the
order terms in the Volterra expansion describing the stimulusaditory forebrain in the distribution of STRF parameters,
response relationship. However, estimating these terms agflecting the range of complexity we observed in the STRFs.
interpreting their biophysical significance is quite difficultln our data, we also observed that some parameters indicative
Examination of the linear prediction showed several types of more complex processing tended to co-occur. For example,
errors. In some cases, the timing and width of responses wesirons with long time scales of integration also tended to have
well predicted but the amplitude was not. In such cases, it mmore nonlinear encoding properties, indicating that some neu-
be possible to improve the prediction by incorporating a stations found in the auditory forebrain could be jointly complex
nonlinearity in the model for predicting responses. In othém multiple attributes. Thus several functional stages of song
cases, errors occurred in predicting the timing and width pfocessing, ranging from simple to quite complex, appear to
responses as well, suggesting dynamic nonlinearities. Swtur within the auditory forebrain and suggest that the audi-
nonlinearities could arise from underlying nonlinear cellulaory forebrain may be involved in the analysis of many differ-
and synaptic processes such as adaptation, facilitation, &md aspects of song structure. The resultant multiple represen-
depression. Further elucidation of the nonlinearities may retions of songs, of varying complexity and time scales, could
quire modeling them based on a detailed description of suidgether provide useful information to higher level auditory
underlying biophysical mechanisms or developing new metareas that are likely to be involved in the perception of highly
ods that describe such nonlinearities. complex, behaviorally relevant stimuli.
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Mapping STRF parameters nized in a strictly serial hierarchy, the auditory forebrain may
be organized in a more elaborate way, performing both serial
A problem of great interest in the study of auditory systemgnd parallel processing of auditory information. The known,
has been to understand the organization of auditory mapsegtensive interconnectivity between the anatomical subregions
different parameters of sounds. To begin to look for patternsafi the auditory forebrain also supports this idea (Vates et al.
the mapping of functional properties of auditory forebraii996). Thus the complex processing properties we observed
neurons onto conventional anatomical subregions of the audbduld arise via a combination of hierarchical and parallel
tory forebrain, we compared the STRF parameters across fhecessing in the network of auditory forebrain subregions.
different subregions. Clearly, more data will be required for Bhe intrinsic circuitry within each of the subregions may also
complete analysis of the different subregions, especially sytday a role in the emergence of this complexity.
regions such as L2a and cHV, where we had a relatively smallOverall our data are consistent with L2a being the major
number of neurons. This is even more important for subregiamput region of the auditory forebrain, responding to relatively
cHV, which was quite heterogeneous in the distribution aimple features of complex sounds with short delays, short
STRF parameters, unlike L2a. Nevertheless we observed sienegration times and more linear processing. Surprisingly, area
eral significant and suggestive trends in our data. L2b often showed complex STRFs, even though it is anatom-
A comparison of the parametdl,.,, across the different ically described as an early auditory area similar to L2a. There
regions revealed a significant difference in the timing for there several possible explanations for this finding. Although
processing of songs in the auditory forebrain, with L2a ré-=2b receives direct thalamic input, the parts of Ov that project
sponding fastest, followed by L2b, L1, and L3, and then cH\o L2b and L2a are distinct, thus potentially contributing to the
which had the slowest responses of all the areas studied heifferences in the response properties of these two areas (Vates
This pattern is consistent with the known anatomical conneet al. 1996). Second, in this study, area L2b was defined to
tivity in the auditory forebrain (see Fig. 1) (see also Vates et ahclude area L, thus making it a much larger composite region.
1996). Since the inputs to area L have not been described in detail so
When we compared the time scales of integration in diffefar, it remains possible that the strongest sources of inputs to
ent regions of the auditory forebrain, we found that L2parts of this composite region are from other auditory forebrain
showed relatively short integration time scales compared witbgions and not directly from the thalamus, which could lead to
regions L2b, L1, L3, and cHV. A similar increase in the timenore complex response properties. Our results suggest a grad-
scale of integration, as indicated by the best modulation freal emergence of more complex features, longer delays and
qguency, has also been observed in successive areas ofiiegration times, and nonlinear processing properties in the
auditory cortex of cats (Schreiner and Urbas 1988). auditory forebrain subsequent to area L2a. As auditory fore-
The quality of the predictions of neural responses obtainbdain areas begin to be probed in much more detail it is likely
from the STRF model, as assessed by the CC between that additional differences between the subregions of the au-
estimated and predicted response, also varied significardijory forebrain will be identified. The stages of processing in
across the auditory forebrain regions. CCs were highest in athase areas are likely to contribute both to the generation of
L2a, followed by L1, L2b, L3, and cHV. This difference issong selective neurons found in higher-level areas in the song-
suggestive of an increase in the nonlinear component of thied brain as well as to the detection and discrimination of a
neural encoding of songs from L2a to L1, L2b, L3, and cHWyide variety of natural sounds behaviorally relevant to song-
respectively. Such an increase in nonlinearity could be refldards.
tive of preparatory stages of processing for the generation of
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